Covering Segments with Unit Squares

نویسندگان

  • Ankush Acharyya
  • Subhas C. Nandy
  • Supantha Pandit
  • Sasanka Roy
چکیده

We study several variations of line segment covering problem with axis-parallel unit squares in IR. A set S of n line segments is given. The objective is to find the minimum number of axis-parallel unit squares which cover at least one end-point of each segment. The variations depend on the orientation and length of the input segments. We prove some of these problems to be NP-complete, and give constant factor approximation algorithms for those problems. For some variations, we have polynomial time exact algorithms. For the general version of the problem, where the segments are of arbitrary length and orientation, and the squares are given as input, we propose a factor 16 approximation result based on multilevel linear programming relaxation technique, which may be useful for solving some other problems. Further, we show that our problems have connections with the problems studied by Arkin et al. [2] on conflict-free covering problem. Our NP-completeness results hold for more simplified types of objects than those of Arkin et al. [2].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A linear time algorithm to cover and hit a set of line segments optimally by two axis-parallel squares

This paper discusses the problem of covering and hitting a set of line segments L in R by a pair of axis-parallel squares such that the side length of the larger of the two squares is minimized. We also discuss the restricted version of covering, where each line segment in L is to be covered completely by at least one square. The proposed algorithm for the covering problem reports the optimum r...

متن کامل

Approximation Algorithms for Geometric Covering Problems for Disks and Squares

Geometric covering is a well-studied topic in computational geometry. We study three covering problems: Disjoint Unit-Disk Cover, Depth-(≤ K) Packing and Red-Blue UnitSquare Cover. In the Disjoint Unit-Disk Cover problem, we are given a point set and want to cover the maximum number of points using disjoint unit disks. We prove that the problem is NP-complete and give a polynomial-time approxim...

متن کامل

On-line Algorithms for the q-adic Covering of the Unit Interval and for Covering a Cube by Cubes

We present efficient algorithms for the on-line q-adic covering of the unit interval by sequences of segments. The basic method guarantees covering provided the total length of segments is at least 1 + 2 · 1 q − 1 q3 . Other algorithms improve this estimate for q ≥ 6. The unit d-dimensional cube can be on-line covered by an arbitrary sequence of cubes whose total volume is at least 2+ 53 + 5 3 ...

متن کامل

Translative Packing of Unit Squares into Equilateral Triangles

Every collection of n (arbitrary-oriented) unit squares can be packed translatively into any equilateral triangle of side length 2.3755 ̈ ? n. Let the coordinate system in the Euclidean plane be given. For 0 ≤ αi ă π{2, denote by Spαiq a square in the plane with sides of unit length and with an angle between the x-axis and a side of Spαiq equal to αi. Furthermore, let T psq be an equilateral tr...

متن کامل

Covering Points by Isothetic Unit Squares

Given a set P of n points in R, we consider two related problems. Firstly, we study the problem of computing two isothetic unit squares which may be either disjoint or intersecting (having empty common zone) such that they together cover maximum number of points. The time and space complexities of the proposed algorithm for this problem are both O(n). We also study the problem of computing k di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017